
Tonal Space Semantics

Mark Granroth-Wilding

1st August 2011

This document aims to describe a simple notation for the tonal space se-
mantics. It is intented as a supplement to the journal paper, which covers the
syntactic formalism in detail, for my second-year review document.

1 Tonic Semantics

The semantics of a tonic is a point in the tonal space. It is underspecified – it
only specifies a point within an enharmonic block (see figure 1). It is therefore
a coordinate between 〈0, 0〉 and 〈3, 2〉 and each coordinate denotes different
infinite set of positions in the space.

A single tonic chord receives as its logical form a single-element list contain-
ing such a coordinate.

2 Cadence Semantics

The semantics of a cadence step is a predicate representing a movement in the
tonic space. An extended cadence is interpreted as the recursive application of
each movement to its resolution.

Authentic cadences – left steps – use the leftonto predicate and plagal ca-
dences – right steps – the rightonto predicate.

We define leftonto (and likewise rightonto) as being subject to a reduction
when applied to a list, as in the case of a tonic resolution, which has a single-
element list as its semantics.

leftonto([X0, X1, ...])⇒ [leftonto(X0), X1, ...]

Example (1) shows an example of a two-step cadence – the familiar IIm7 V7

I. The derivation shows the combination of the semantics of each chord into the
semantics for the sequence.

(1) IIm7 V7 I

λx.leftonto(x) λx.leftonto(x) [〈0, 0〉]
>

[lefonto(〈0, 0〉)]
>

[leftonto(leftonto(〈0, 0〉))]

The recursive application of multiple cadence steps can be combined ahead of
time, before their application to their resolution, using the composition operator.

f ◦ g ≡ λx.f(g(x))

1



[[I−

[[III−

[V −

[V II−

II−

]IV −

]V I−

[[V

[[V II

[II

IV

V I

]I

]III

[[II

[IV

[V I

I

III

]V

]V II

[[V I

[I

[III

V

V II

]II

]]IV

[[III

[V

[V II

II

]IV

]V I

]]I

[[V II+

[II+

IV +

V I+

]I+

]III+

]]V +

[IV +

[V I+

I+

III+

]V +

]V II+

]]II+
(0, 1)

(0, 0)

(0,−1)

(−1, 0)

(−1,−1)

(−1,−2)

(1, 1)

(1, 0)

(1,−1)

Figure 1: Enharmonic blocks at the centre of the space. Each position within
these 4x3 blocks is equated by equal temperament with the same position within
every other block.

3 Colouration Semantics

The lexicon includes some categories for interpreting colouration chords, which
contribute nothing much to the functional structure of the harmony, but spice
up the realisation a bit. Accordingly, these are given an empty semantics (that
is, the identity function), which simply ignores them.

A typical example of this is the sequence I IV I, often played during long
passages of a I chord. This is really a form of plagal cadence and a fine grained
analysis might treat it as such. However, for most analysis purposes we wish
to ignore this very brief excursion from the tonic. An example derivation using
this empty semantics is shown in example (2).

(2) I IV I

λx.x λx.x [〈0, 0〉]
>

[〈0, 0〉]
>

[〈0, 0〉]

In many cases, we do not even return to the tonic after our excursion, continuing
with a cadence straight after the IV. This is the purpose of the backward-facing
colouration lexical category and the semantics ignores the IV in the same way.

4 Development Semantics

The development combinatory rule combines sequences of tonic passages and
resolved cadences into larger units, ultimately into a whole piece of music. Every
logical form introduced so far has been a single-item list, the behaviour of the

2



development rule’s semantics is rather trivial. It simply concatenates its two
arguments: the syntax ensures these are lists.

Example (3) shows a pair of resolved cadences being combined in this way.
Example (4) shows a tonic (a single-element list) combining with a subsequent
resolved cadence.

(3) IIm7 V7 I V7 I

λx.leftonto(x) λx.leftonto(x) [〈0, 0〉] λx.leftonto(x) [〈0, 0〉)]
> >

[lefonto(〈0, 0〉)] [lefonto(〈0, 0〉)]
>

[leftonto(leftonto(〈0, 0〉))]
dev

[leftonto(leftonto(〈0, 0〉)), lefonto(〈0, 0〉)]
(4) I IIm7 V7 I

[〈0, 0〉] λx.leftonto(x) λx.leftonto(x) [〈0, 0〉]
>

[lefonto(〈0, 0〉)]
>

[leftonto(leftonto(〈0, 0〉))]
dev

[〈0, 0〉, leftonto(leftonto(〈0, 0〉))]

5 Coordination Semantics

Logical forms representing unresolved cadences can be coordinated to share their
eventual resolution. This is carried out by the special musical coordination
combinator. The semantics of this combinator simply conjoins the cadence
logical forms using the ∧ operator. Note that, unlike in language semantics,
this conjunction operator must preserve the order of its arguments.

A ∧B 6≡ B ∧A

We can also reduce brackets to reflect the associativity of the conjunction
operator.

A ∧B ∧ C ≡ (A ∧B) ∧ C
≡ A ∧ (B ∧ C)

A ∧ (B ∧ C)⇒ A ∧B ∧ C

(A ∧B) ∧ C ⇒ A ∧B ∧ C

The functions that denote cadences are simply conjoined by ∧:

(5) IIm7 V7 IIm7 V7

λx.leftonto(leftonto(x)) λx.leftonto(leftonto(x))
&

λx.leftonto(leftonto(x)) ∧ λx.leftonto(leftonto(x))

The result is treated as a functor that can be applied to its resolution. It reduces
under application to a list in the same way as leftonto and rightonto. Note that
the individual cadences are not actually applied to the resolution at this stage.

3



(6) IIm7 V7 IIm7 V7 I

λx.leftonto(leftonto(x)) λx.leftonto(leftonto(x)) [〈0, 0〉]
&

λx.leftonto(leftonto(x)) ∧ λx.leftonto(leftonto(x))
>

[(λx.leftonto(leftonto(x)) ∧ λx.leftonto(leftonto(x)))(〈0, 0〉)]

More than two cadences can be coordinated to share the same resolution. (The
predicate leftonto is abbreviated to L to save space.)

(7) IIm7 V7 IIm7 V7 IIm7 V7 I

λx.L(L(x)) λx.L(L(x)) λx.L(L(x)) [〈0, 0〉]
&

λx.L(L(x)) ∧ λx.L(L(x))
&

λx.L(L(x)) ∧ λx.L(L(x)) ∧ λx.L(L(x))
>

[(λx.L(L(x)) ∧ λx.L(L(x)) ∧ λx.L(L(x)))(〈0, 0〉)]

The result of a coordination (once applied to its resolution) can become the
recursive resolution of a prior cadence step.

(8) VI7 IIm7 V7 IIm7 V7 I

λx.L(x) λx.L(L(x)) λx.L(L(x)) [〈0, 0〉]
&

λx.L(L(x)) ∧ λx.L(L(x))
>

[(λx.L(L(x)) ∧ λx.L(L(x)))(〈0, 0〉)]
>

[L((λx.L(L(x)) ∧ λx.L(L(x)))(〈0, 0〉))]

However, this logical form will result in the same tonal space path as that which
would have been produced by composing the VI7 with the following IIm7 V7

before coordinating:

[(λx.L(L(L(x))) ∧ λx.L(L(x)))(〈0, 0〉)]

We therefore define the following equivalence and by convention reduce the left-
hand side form to the right-hand side wherever possible.

A ((B ∧ ...) C)⇒ (A ◦B ∧ ...) C

4



6 Bigger Example

To show all of these things in action at once, the example below shows the compositional semantics being combined for a longer sequence.
The sequence begins on a tonic, cadences back to the same tonic, with a I IV I colouration on the tonic. It then modulates, via a cadence,
to a new key – the subdominant key. When it gets to its new tonic, there is another IV colouration, this time not returning to the tonic.

(9) I IIm7 V7 IIm7 V7 I IV I Vm7 I7 IV [VII...

[〈0, 0〉] λx.L(x) λx.L(x) λx.L(x) λx.L(x) λx.x λx.x [〈0, 0〉] λx.L(x) λx.L(x) [〈−1, 0〉] λx.x
>B >B > <

λx.L(L(x)) λx.L(L(x)) [〈0, 0〉] [〈−1, 0〉]
& > >

(λx.L(L(x)) ∧ λx.L(L(x))) [〈0, 0〉] [L(〈−1, 0〉)]
> >

[(λx.L(L(x)) ∧ λx.L(L(x)))(L(〈0, 0〉))] [L(L(〈−1, 0〉))]
dev

[〈0, 0〉, (λx.L(L(x)) ∧ λx.L(L(x)))(L(〈0, 0〉))]
dev

[〈0, 0〉, (λx.L(L(x)) ∧ λx.L(L(x)))(L(〈0, 0〉)),L(L(〈−1, 0〉))]5



7 Extracting the Tonal Space Path

The logical forms that come out of the above semantics represent paths through
the tonal space. Although the tonic points are ambiguous in the representation,
the points of a whole path are unambiguous, modulo an arbitrary choice of
starting point. This is because certain constraints on the relative position of
points must be satisfied: given the fully-specified position of the first point on
the path, the rest of the points are constrained to individual points on the tonal
space.

The most obvious constraint is on the point created by a left (or right)
movement, denoted in the semantics by leftonto (or rightonto) predicates. In
leftonto(pth), the point at which the movement begins must be one step in the
grid to the right of the first point of pth. If the point (x, y) if fully specified, the
whole path leftonto(leftonto((x, y))) is therefore also unambiguous.

Two cadences that share a resolution through coordination are constrained
to end at the same point, since their points are constrained relative to their
resolution.

There is no obvious constraint between items in the top-level list of tonics
and resolved cadences. The most plausible choice of relative positions appears
to be reached by constraining the start point of a particular item to be the
closest possible point to the end point of the previous item.

For example, take the following two paths:

1. [〈0, 0〉, leftonto(leftonto(〈0, 0〉))]

2. [〈0, 0〉, leftonto(leftonto(leftonto(〈0, 0〉)))]

The start of the second item in path 1 is dependent, ultimately, on the
cadence resolution 〈0, 0〉. But this point is underspecified: we can choose for it
any of the infinite points that lie at 〈0, 0〉 within their enharmonic block. Given
an arbitrary choice of the first item’s point at the central (0, 0), we will choose
the same point for the end of the second item, since it puts the start of the
second item (now (2, 0)) as close as possible to (0, 0).

In path 2, however, the second path begins at a point further from its ending.
In this case we will choose (−1, 1) as the start point for the second item by setting
the 〈0, 0〉 at its end to be at (−4, 1).

Note that the choice of the first point on the path is unimportant: two paths
identical in form, but occurring at different positions in the space can be consid-
ered equivalent, since the only difference between them is their absolute pitch
and we (uncontraversially) consider precise absolute pitch not to be pertinent
to musical semantics.

A simple algorithm can be constructed by means of a recursive transforma-
tion of the logical predicates to produce the flat tonal space path represented
by a logical form generated by the grammar.

6


