
Chord Grammar 3.0 (Halfspan)

Mark Granroth-Wilding

3 March 2011

1 Lexicon (Without Semantics)

T X(m) := IT

T III Xm := [V IT

T bVI X := IIIT

D X(m)7 := ID/cIV
D|T

D Bd X(m)7 := V ID/cII
D|T

D Tt X(m)7 := ]IV D/cV II
D|T

D Btk X(m)7 := [IIID/c[V I
D|T

S X(m) := IS/cV
S|T

S bIII X := V IS/cIII
S|T

Dim bVII X◦ := IV D/c[V II
D|T

Dim V X◦ := IID/cV
D|T

Dim III X◦ := V IID/cIII
D|T

Dim bII X◦ := [V ID/c[II
D|T

Pass I X◦ := IT /IT

X◦ := ID/ID

Pass VI X◦ := V IT /V IT

X◦ := V ID/V ID

Pass bV X◦ := [V T /[V T

X◦ := [V D/[V D

Pass bIII X◦ := [IIIT /[IIIT

X◦ := [IIID/[IIID

Aug bII X7 := [V ID/c[II
D|T

Aug VI X7 := IIID/cV I
D|T

TC IV X(m) := V T /V T

TC IVb X(m) := V T \V T

TC II X(m) := [V IIT /[V IIT

TC IIb X(m) := [V IIT \[V IIT

1.1 Minorness

There are no longer any major/minor features on the syntactic categories. They were in effect not being
used for anything in the previous version of the lexicon and the categories are much more readable
without them.

1



1.2 Repetition Categories

The previous lexicon had a lot of categories for repeated chords. The basic idea was to have a I/I
category and something similar for dominant chord, but every substitution had to have a corresponding
version of the repetition category.

Instead, we can just generate these categories automatically by expanding the lexicon using a unary
rule, rather like adding type-raised categories to a lexicon.

To generate the tonic repetition categories, we apply:

X ⇒Rep X/X : λx.x

where X ranges over half-categories with function T .
For the dominant and subdominant repetition categories, we apply:

X/Y ⇒Crep X/X : λx.x

where X ranges over half-categories with function S or D.

1.3 Modalities

I’ve reverted to my old simpler modality system, where the only modalities are ‘c’ and ‘.’ (or nothing).
This is sufficient to mark slash categories that represent a cadence, so that the coordination rule can be
restricted to apply only to these.

If we wish to restrict the coordination rule further so that it’s not possible to coordinate a plagal with
an authentic cadence (which currently we do), we can use the function marker on the result half-category.

2 Lexicon (With Semantics)

The logical forms produced by the grammar are now paths, which are made up of lists of coordinates
in the tonal space. The points are expressed as four values: an (x, y) coordinate of the point within an
enharmonic block (4x3 block); and an (X,Y ) coordinate identifying the block.

A lexical category’s semantics may refer to a point in the space with two coordinates. These give the
(x, y) values.

leftonto is a function Path → Path. It operates on a tonal space path and produces a path that is
identical, but with a point prepended that is one step to the right of the start point of the path (usually
the first point on the path, see below).

rightonto works analagously.

T X(m) := IT : [(0, 0)]
T III Xm := [V IT : [(0, 2)]
T bVI X := IIIT : [(0, 1)]

D X(m)7 := ID/cIV
D|T : λx.leftonto(x)

D Bd X(m)7 := V ID/cII
D|T : λx.leftonto(x)

D Tt X(m)7 := ]IV D/cV II
D|T : λx.leftonto(x)

D Btk X(m)7 := [IIID/c[V I
D|T : λx.leftonto(x)

S X(m) := IS/cV
S|T : λx.rightonto(x)

S bIII X := V IS/cIII
S|T : λx.rightonto(x)

Dim bVII X◦ := IV D/c[V II
D|T : λx.leftonto(x)

Dim V X◦ := IID/cV
D|T : λx.leftonto(x)

Dim III X◦ := V IID/cIII
D|T : λx.leftonto(x)

Dim bII X◦ := [V ID/c[II
D|T : λx.leftonto(x)

Pass I X◦ := IT /IT : λx.x
X◦ := ID/ID : λx.x

Pass VI X◦ := V IT /V IT : λx.x

2



X◦ := V ID/V ID : λx.x
Pass bV X◦ := [V T /[V T : λx.x

X◦ := [V D/[V D : λx.x
Pass bIII X◦ := [IIIT /[IIIT : λx.x

X◦ := [IIID/[IIID : λx.x

Aug bII X7 := [V ID/c[II
D|T : λx.leftonto(x)

Aug VI X7 := IIID/cV I
D|T : λx.leftonto(x)

TC IV X(m) := V T /V T : λx.x
TC IVb X(m) := V T \V T : λx.x
TC II X(m) := [V IIT /[V IIT : λx.x
TC IIb X(m) := [V IIT \[V IIT : λx.x

3 Rules

A path is primarily made up of a list of points. It also may have a start point that is distinct from the
points of the path.

In general, the start point of a path is just the first point of the path. A path may have a different
start point. This is written using a superscript: (5,3)[(3, 0), (2, 0), (1, 0)]. The start point of this path is
(5, 3).

The function jump alters the start point of a path. Its first argument is a coordinate c and second a
path p. It produces a path with the points of p whose start point is c.

The following grammatical rules are used:

Application:

X/Y : f Y –Z : x ⇒> X–Z : f(x)

X–Y : x Z\Y : f ⇒< X–Z : f(x)

Composition:

X/Y : f Y/Z : g ⇒>B
X/Z : λx.f(g(x))

X\Y : g Z\X : f ⇒<B
Z\Y : λx.f(g(x))

Coordination:

Xf/cY : f Zf/cY : g ⇒& X/cY : λx.f(jump(head(x), g(x)))

Development:

V –W : x X–Y : y ⇒dev V –Z : dev(x, y)

3.1 Development Semantics

The development rule uses the function dev as its semantics. It behaves as follows.
Both arguments are paths. A translated version of the first path x′ is produced, retaining the (x, y)

values of the coordinates, but altering all of the (X,Y ) block locations by the same shift. The shift is
chosen such that the final point on x falls in the space immediately surrounding the first point on y.
Figure 1 shows the instance of note that would be chosen to be closest to the point (0, 0).

The path returned is the concatenation of the shifted version of x with y.

3



[[III−

[V −

[V II−

II−

]IV −

[[V II

[II

IV

V I

]I

[IV

[V I

I

III

]V

[I

[III

V

V II

]II

[V

[V II

II

]IV

]V I

[II+

IV +

V I+

]I+

]III+

Figure 1: Nearest instance of each equally tempered tone to the point I, (0, 0)

4


